CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness

Privacy in Distributed Machine Learning

Abstract

Federated learning (FL) has emerged as a promising framework for distributed machine learning. It enables collaborative learning among multiple clients, utilizing distributed data and computing resources. However, FL faces challenges in balancing privacy guarantees, communication efficiency, and overall model accuracy. In this work, we introduce CorBin-FL, a privacy mechanism that uses correlated binary stochastic quantization to achieve differential privacy while maintaining overall model accuracy. The approach uses secure multi-party computation techniques to enable clients to perform correlated quantization of their local model updates without compromising individual privacy. We provide theoretical analysis showing that CorBin-FL achieves parameter-level local differential privacy (PLDP), and that it asymptotically optimizes the privacy-utility trade-off between the mean square error utility measure and the PLDP privacy measure. We further propose AugCorBin-FL, an extension that, in addition to PLDP, achieves user-level and sample-level central differential privacy guarantees. For both mechanisms, we derive bounds on privacy parameters and mean squared error performance measures. Extensive experiments on MNIST and CIFAR10 datasets demonstrate that our mechanisms outperform existing differentially private FL mechanisms, including Gaussian and Laplacian mechanisms, in terms of model accuracy under equal PLDP privacy budgets.

Publication
arXiv, 2024.
Md Jueal Mia
Md Jueal Mia
Graduate Research Assistant

My research interests include Privacy and security issues in federated learning, Machine Learning, Deep Learning, Computer vision, Data mining.